| Título: | Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem | 
																
																																		
																																		
																																	
																																																				
																																						
												| Autores: | Rodríguez Bernal, Aníbal																																							 ; 
																				Willie, Robert | 
																																											
																											
											| Tipo de documento: | texto impreso | 
																									
																																	
																
																											
											| Editorial: | American Institute of Mathematical Sciences, 2005-05 | 
																									
																																	
																
																																	
																																	
																																	
																																	
																											
											| Dimensiones: | application/pdf | 
																									
																																	
																											
											| Nota general: | info:eu-repo/semantics/restrictedAccess | 
																									
																											
											| Idiomas: |  | 
																									
																																	
																																	
																																	
																																	
																											
											| Palabras clave: | Estado = Publicado  
																																							,
																										 Materia = Ciencias: Matemáticas: Funciones (Matemáticas)  
																																							,
																										 Tipo = Artículo | 
																									
																											
											| Resumen: | We make precise the sense in which spatial homogenization to a constant function in space is attained in a linear parabolic problem when large diffusion in all parts of the domain is assumed. Also interaction between diffusion and boundary flux terms is considered. Our starting point is a detailed analysis of the large diffusion effects on the associated elliptic and eigenvalue problems. Here convergence is shown in the energy space H-1(Omega) and in the space of continuous functions C(Omega). In the parabolic case we prove convergence in the functional space L-infinity((0, T), L-2(Omega)) boolean AND L-2((0, T), H-1(Omega)). | 
																									
																																	
																																	
																											   
										   		| En línea: | https://eprints.ucm.es/id/eprint/17781/1/RodBernal27.pdf |