Título:
|
Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem
|
Autores:
|
Rodríguez Bernal, Aníbal ;
Willie, Robert
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Institute of Mathematical Sciences, 2005-05
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Funciones (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
We make precise the sense in which spatial homogenization to a constant function in space is attained in a linear parabolic problem when large diffusion in all parts of the domain is assumed. Also interaction between diffusion and boundary flux terms is considered. Our starting point is a detailed analysis of the large diffusion effects on the associated elliptic and eigenvalue problems. Here convergence is shown in the energy space H-1(Omega) and in the space of continuous functions C(Omega). In the parabolic case we prove convergence in the functional space L-infinity((0, T), L-2(Omega)) boolean AND L-2((0, T), H-1(Omega)).
|
En línea:
|
https://eprints.ucm.es/id/eprint/17781/1/RodBernal27.pdf
|