Título:
|
Classification of quadruple Galois canonical covers I
|
Autores:
|
Gallego Rodrigo, Francisco Javier ;
Purnaprajna, Bangere P.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Mathematical Society, 2008-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
In this article we classify quadruple Galois canonical covers of smooth surfaces of minimal degree. The classification shows that they are either non-simple cyclic covers or bi-double covers. If they are bi-double, then they are all fiber products of double covers. We construct examples to show that all the possibilities in the classification do exist. There are implications of this classification that include the existence of families with unbounded geometric genus, in sharp contrast with triple canonical covers, and families with unbounded irregularity, in sharp contrast with canonical covers of all other degrees. Together with the earlier known results on double and triple covers, a pattern emerges that motivates some general questions on the existence of higher degree canonical covers, some of which are answered in this article.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12606/1/2008classificationpdf.pdf
|