Título:
|
Electrical and optical properties of composite PEDOT: PSS-based thin films with NiO nanoparticles
|
Autores:
|
Moldarev, D. ;
Taeño González, María ;
Maestre Varea, David ;
Cremades Rodríguez, Ana Isabel ;
Karazhanov, Smagul Zh ;
Marstein, E.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2020-05-08
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by_nc_nd
info:eu-repo/semantics/embargoedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física de materiales
,
Materia = Ciencias: Física: Física del estado sólido
,
Tipo = Artículo
|
Resumen:
|
Due to the combination of low cost materials deposition and device fabrication methods as well as competitive efficiency compared to the other Si solar cell architectures, the hybrid organic-silicon solar cells have attracted attention of the scientific community. It has recently been demonstrated that spin-coated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (hereafter PEDOT:PSS) on a silicon wafer is a promising material due to its good optical and electrical properties. However, degradation caused by atmospheric exposure and relatively poor passivation properties limits implementation of PEDOT:PSS- silicon devices. Functionalization of PEDOT:PSS by inorganic nanoparticles might provide a possible solution as was shown for TiO_2 and SnO_2 nanoparticles. In this contribution, we present our results on spincoated PEDOT:PSS thin-films with NiO nanoparticles. We show that PEDOT:PSS mixed with Triton X-100 and dimethyl sulfoxide (DMSO) or ethylene glycol (EG) form a homogenous film and passivates the Si surface with charge carrier lifetimes of 300-400 ms with good reproducibility. Time-resolved measurements revealed continuous degradation of the passivation properties in air, however saturation of the degradation at approximately 150 ms was observed in N_2 atmosphere. The influence of the NiO nanoparticles on the optical properties of PEDOT:PSS is negligible, whereas the surface passivation properties are worsened due probably to the formation of large size agglomerates exceeding thickness of PEDOT:PSS film.
|
En línea:
|
https://eprints.ucm.es/id/eprint/63569/1/CremadesAna80%20Postprint%2BEMB_08-MAY-2021%2BCC%28nc-nd%29.pdf
|