Título:
|
Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces.
|
Autores:
|
Jiménez Sevilla, María del Mar ;
Payá Albert, Rafael
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Polish Acad Sciencies Inst Mathematics, 1998
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Álgebra
,
Tipo = Artículo
|
Resumen:
|
For each natural number N, we give an example of a Banach space X such that the set of norm attaining N{linear forms is dense in the space of all continuous N{linear forms on X, but there are continuous (N +1){linear forms on X which cannot be approximated by norm attaining (N+1){linear forms. Actually, X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.
|
En línea:
|
https://eprints.ucm.es/id/eprint/22372/1/Jimenez21.pdf
|