Título:
|
Algebrability of the set of non-convergent Fourier series
|
Autores:
|
Aron, Richard M. ;
Pérez García, David ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Polish Acad Sciencies Inst Mathematics, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E.
|
En línea:
|
https://eprints.ucm.es/id/eprint/20214/1/pdf.pdf
|