Título:
|
Moduli space of principal sheaves over projective varieties
|
Autores:
|
Sols, Ignacio ;
Gómez, Tomás L.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Princeton University, 2005-03
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Álgebra
,
Tipo = Artículo
|
Resumen:
|
Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan's notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a projective variety X is a triple (P, E, psi), where E is a torsion free sheaf on X, P is a principal G-bundle on the open set U where E is locally free and psi is an isomorphism between E vertical bar(U) and the vector bundle associated to P by the adjoint representation.
|
En línea:
|
https://eprints.ucm.es/id/eprint/20368/1/Sols06libre.pdf
|