Título:
|
Spectral statistics of Hamiltonian matrices in tridiagonal form
|
Autores:
|
Relaño Pérez, Armando ;
Molina, R. A. ;
Zuker, A. P. ;
Retamosa Granado, Joaquín
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2005-06
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Termodinámica
,
Tipo = Artículo
|
Resumen:
|
When a matrix is reduced to Lanczos tridiagonal form, its matrix elements can be divided into an analytic smooth mean value and a fluctuating part. The next-neighbor spacing distribution P(s) and the spectral rigidity Delta _(3) are shown to be universal functions of the average value of the fluctuating part. It is explained why the behavior of these quantities suggested by random matrix theory is valid in far more general cases.
|
En línea:
|
https://eprints.ucm.es/id/eprint/27768/1/Relano42libre.pdf
|