Título:
|
l(q)-structure of variable exponent spaces
|
Autores:
|
Hernández, Francisco L. ;
Ruiz Bermejo, César
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2012-05-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
It is shown that a separable variable exponent (or Nakano) function space L-p(.)(?) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(?) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(?), for every q is an element of Rp(.)
|
En línea:
|
https://eprints.ucm.es/id/eprint/15969/1/HerRod01.pdf
|