Título: | Blow-up profiles in one-dimensional, semilinear parabolic problems |
Autores: | Herrero, Miguel A. ; Velázquez, J.J. L. |
Tipo de documento: | texto impreso |
Editorial: | Taylor & Francis, 1992 |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Ecuaciones diferenciales , Tipo = Artículo |
Resumen: | Let u be a solution of the Cauchy problem ut=uxx+up, x?R, t>0, u(x,0)=u0(x), x?R, where p>1 and u0 is continuous, nonnegative, and bounded. Suppose that u blows up at t=T and u(x,t)??(p?1)?1/(p?1)(T?t)?1/(p?1). The authors show that the blow-up set is discrete. Also, if x=0 is a blow-up point then either limx?0[|x|2/log|x|]1/(p?1)u(x,T)=[8p/(p?1)2] 1/(p?1) or there exists a constant C>0 and an even integer m?4 such that limx?0|x|m/(p?1)u(x,T)=C. |
Ejemplares
Estado |
---|
ningún ejemplar |