Título:
|
Distributions admitting a local basis of homogeneous polynomials
|
Autores:
|
Castrillón López, Marco ;
Gadea, P.M. ;
Muñoz Masqué, Jaime
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
the American Romanian Academy of Arts and Sciences (USA), 1999
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Teoría de números
,
Materia = Ciencias: Matemáticas: Análisis numérico
,
Tipo = Artículo
|
Resumen:
|
The paper is a survey of several results by the authors, the main one of them being the following characterization of homogeneous algebraic distributions: Let us consider a vertical distribution D on the vector bundle p:E?M locally spanned by vertical vector fields X1,?,Xr. Let ? be the Liouville vector field of the vector bundle. Then there exists an r×r invertible matrix with smooth entries (cij) such that the vector fields Yj=?ri=1cijXi, 1?j?r, are homogeneous algebraic of degree d if and only if there exists an r×r matrix A=(aij) of smooth functions given by [?,Xj]=?ri=1aijXi such that A restricted to the zero section of E is(d?1) times the identity matrix.
Examples and applications are given.
|
En línea:
|
https://eprints.ucm.es/id/eprint/24301/1/castrill%C3%B3n245pdf.pdf
|