Título:
|
Averaging and orthogonal operators on variable exponent spaces L-p(.) (Omega)
|
Autores:
|
Hernández, Francisco L. ;
Ruiz Bermejo, César
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2014-05
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
Given a measurable space (Omega, mu) and a sequence of disjoint measurable subsets A = (A(n))(n), the associated averaging projection P-A and the orthogonal projection T-A are considered. We study the boundedness of these operators on variable exponent spaces L-P(.) (Omega). These operators are unbounded in general. Sufficient conditions on the sequence A in order to achieve that P-A or T-A be bounded are given. Conditions which provide the boundedness of P-A imply that T-A is also bounded. The converse is not true. Some applications are given. In particular, we obtain a sufficient condition for the boundedness of the Hardy-Littlewood maximal operator on spaces L-P(.) (Omega).
|
En línea:
|
https://eprints.ucm.es/id/eprint/24702/1/Hern%C3%A1ndez200.pdf
|