Título:
|
Mordell integrals and Giveon-Kutasov duality
|
Autores:
|
Giasemidis, Georgios ;
Tierz, Miguel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Int School Advanced Studies, 2016
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
We solve, for finite N, the matrix model of supersymmetric U(N) Chern-Simons theory coupled to Nf massive hypermultiplets of R-charge ½, together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order Nf ? 1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N = 3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to Nf = 12 lavours)
|
En línea:
|
https://eprints.ucm.es/36441/1/Tierz1%20libre.pdf
|