Título:
|
Quantum corrections to minimal surfaces with mixed three-form flux
|
Autores:
|
Hernández Redondo, Rafael ;
Miguel Nieto, Juan ;
Ruiz Gil, Roberto
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2020-01-27
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física
,
Tipo = Artículo
|
Resumen:
|
We obtain the ratio of semiclassical partition functions for the extension under mixed flux of the minimal surfaces subtending a circumference and a line in Euclidean AdS(3) x S-3 x T-4. We reduce the problem to the computation of a set of functional determinants. If the Ramond-Ramond flux does not vanish, we find that the contribution of the B-field is comprised in the conformal anomaly. In this case, we successively apply the Gel'fand-Yaglom method and the Abel-Plana formula to the flat-measure determinants. To cancel the resultant infrared divergences, we shift the regularization of the sum over half-integers depending on whether it corresponds to massive or massless fermionic modes. We show that the result is compatible with the zeta-function regularization approach. In the limit of pure Neveu-Schwarz-Neveu-Schwarz flux we argue that the computation trivializes. We extend the reasoning to other surfaces with the same behavior in this regime.
|
En línea:
|
https://eprints.ucm.es/59406/1/Hern%C3%A1ndezRedondoLIBRE42.pdf
|