Título:
|
A continuous model for quasinilpotent operators.
|
Autores:
|
Gallardo Gutiérrez, Eva A. ;
Partington, Jonathan R. ;
Rodriguez, Daniel J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 2016-05-11
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K?K???K??K?K???K?? acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.
|
En línea:
|
https://eprints.ucm.es/38211/1/Gallardo26.pdf
|