| Título: | Higher order dual varieties of generically k-regular surfaces | 
																
																																		
																																		
																																	
																																																				
																																						
												| Autores: | Mallavibarrena Martínez de Castro, Raquel																																							 ; 
																				Lanteri, Antonio | 
																																											
																											
											| Tipo de documento: | texto impreso | 
																									
																																	
																
																											
											| Editorial: | Birkhäuser Verlag, 2000-07-03 | 
																									
																																	
																
																																	
																																	
																																	
																																	
																											
											| Dimensiones: | application/pdf | 
																									
																																	
																											
											| Nota general: | info:eu-repo/semantics/restrictedAccess | 
																									
																											
											| Idiomas: |  | 
																									
																																	
																																	
																																	
																																	
																											
											| Palabras clave: | Estado = Publicado  
																																							,
																										 Materia = Ciencias: Matemáticas: Álgebra  
																																							,
																										 Tipo = Artículo | 
																									
																											
											| Resumen: | We prove that, if a smooth complex projective surface S subset of P-N is k-regular, then its k-th order dual variety has the expected dimension, except if S is the k-th Veronese surface. This answers positively a conjecture stated in a previous paper. | 
																									
																																	
																																	
																											   
										   		| En línea: | https://eprints.ucm.es/id/eprint/16625/1/Malla04.pdf |