Título: | Equivariant vector bundles and logarithmic connections on toric varieties |
Autores: | Biswas, Indranil ; Muñoz, Vicente ; Sánchez Hernández, Jonathan |
Tipo de documento: | texto impreso |
Editorial: | Academic Press, 2013-06 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas , Tipo = Artículo |
Resumen: |
Let X be a smooth complete complex toric variety such that the boundary is a simple normal crossing divisor, and let E be a holomorphic vector bundle on X. We prove that the following three statements are equivalent: The holomorphic vector bundle E admits an equivariant structure. The holomorphic vector bundle E admits an integrable logarithmic connection singular over D. The holomorphic vector bundle E admits a logarithmic connection singular over D. We show that an equivariant vector bundle on X has a tautological integrable logarithmic connection singular over D. This is used in computing the Chern classes of the equivariant vector bundles on X. We also prove a version of the above result for holomorphic vector bundles on log parallelizable G-pairs (X, D), where G is a simply connected complex affine algebraic group |
En línea: | https://eprints.ucm.es/id/eprint/22154/1/VMu%C3%B1oz75elsevier.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |