Título:
|
Extension of polynomials defined on subspaces.
|
Autores:
|
Fernandez Unzueta, Maite ;
Prieto Yerro, M. Ángeles
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Cambridge Univ Press, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
Let k is an element of N and let E be a Banach space such that every k-homogeneous polynomial defined on a subspace of E has an extension to E. We prove that every norm one k-homogeneous polynomial, defined on a subspace, has an extension with a uniformly bounded norm. The analogous result for holomorphic functions of bounded type is obtained. We also prove that given an arbitrary subspace F subset of E. there exists a continuous morphism phi(k,F) : P((k)F) -> P((k)E) satisfying phi(k,F)(P)vertical bar(F) = P, if and only E is isomorphic to a Hilbert space.
|
En línea:
|
https://eprints.ucm.es/id/eprint/17522/1/PrietoYerro02.pdf
|