Título: | Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion |
Autores: | Herrero, Miguel A. ; Velázquez, J.J. L. |
Tipo de documento: | texto impreso |
Editorial: | Springer, 1990 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Ecuaciones diferenciales , Tipo = Artículo |
Resumen: |
In this paper the authors study the asymptotic behaviour of solutions u?(x,t) of the Cauchy problems as ? goes to zero: ut???u+up=0, x?RN, t>0; u(x,0)=u0(x), x?RN, 0 0; u(x,0)=u0(x), x?RN, it is proved under certain assumptions that u?(x,t)?u¯(x,t) as ??0 uniformly on compact subsets of RN ×[0,?) and, moreover, a precise estimate is given. Local and global estimates for extinction time are also given. The proofs are somewhat technical |
En línea: | https://eprints.ucm.es/id/eprint/18093/1/Herrero52.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |