Título:
|
Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity
|
Autores:
|
Matesanz Sancho, María Concepción ;
Linares, Javier ;
Lilue, Isabel ;
Sánchez Salcedo, Sandra ;
Feito Castellano, María José ;
Arcos Navarrete, Daniel ;
Vallet Regí, María ;
Portolés Pérez, María Teresa
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Royal Society of Chemistry, 2014-05-21
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Química
,
Materia = Ciencias: Química: Materiales
,
Materia = Ciencias: Química: Química inorgánica
,
Tipo = Artículo
|
Resumen:
|
In the present study, the effects of nanocrystalline hydroxyapatite (nano-HA) and nanocrystalline Si-substituted hydroxyapatite (nano-SiHA) on osteoclast differentiation and resorptive activity have been evaluated in vitro using osteoclast-like cells. The action of these materials on proinflammatory and reparative macrophage populations was also studied. Nano-SiHA disks delayed the osteoclast differentiation and decreased the resorptive activity of these cells on their surface, as compared to nano-HA samples, without affecting cell viability. Powdered nano-SiHA also induced an increase of the reparative macrophage population. These results along with the beneficial effects on osteoblasts previously observed with powdered nano-SiHA suggest the potential of this biomaterial for modulating the fundamental processes of bone formation and turnover, preventing bone resorption and enhancing bone formation at implantation sites in treatment of osteoporotic bone and in bone repair and regeneration.
|
En línea:
|
https://eprints.ucm.es/id/eprint/40899/1/%28617%29%20J.%20Mater.%20Chem.%202%2C%202910-2919%20%20%202014%20DANI.pdf
|