Resumen:
|
This paper continues earlier work by the authors [see, in particular, H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456; H. M. Hilden, M. T. Lozano and J. M. Montesinos, in Differential topology (Siegen, 1987), 1–13, Lecture Notes in Math., 1350, Springer, Berlin, 1988;] on universal knots, links and groups, which shows that every closed oriented 3-manifold has the structure of an arithmetic orbifold. Investigating "how rare a flower is an arithmetic orbifold in the garden of hyperbolic orbifolds", the authors produce a three-parameter family B(m,n,p), 3?m,n,p??, of them with singular set the Borromean rings and show (simultaneously providing an excellent survey on arithmetic hyperbolic groups and orbifolds) that only eleven of its members are arithmetic.
|