Título: | Control diagenético sobre la calidad de los reservoriosde las areniscas “U” y “T” de la Fm Napo delCretácico de la Cuenca Oriente, Ecuador.Modelización térmica y su relación con la generaciónde hidrocarburos. |
Autores: | Estupiñán Letamendi, Jenny |
Tipo de documento: | texto impreso |
Fecha de publicación: | 2006-01-23 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/openAccess |
Idiomas: | |
Palabras clave: | Estado = Presentado , Materia = Ciencias: Geología: Petrología , Tipo = Tesis |
Resumen: |
La cuenca del Oriente Ecuatoriano, se encuentra en la parte oriental del Ecuador, corresponde a una cuenca de antepaís, que se estructura como resultados de esfuerzos transpresivos a partir del Cretácico superior, lo que provoca la emersión de la Cordillera Real en la parte occidental del Oriente y la formación de la cuenca de tras arco. Las Areniscas “U” y “T”, de la Fm Napo del Cretácico corresponden el área de estudio de este trabajo. La Fm Napo fue depositada en periodos de transgresión marina (HST), de sedimentos detríticos procedentes de la parte occidental de la cuenca. Sin embargo, algunos intervalos de areniscas “U” y “T” fueron depositadas en periodos de regresión (LST). Los espesores de las areniscas “U” y “T” decrecen, desde el este hacia el oeste. Hacia el Oeste las areniscas son de grano fino bien seleccionadas y más glauconíticas comparadas con las areniscas del este. Los análisis petrológicos y geoquímicos fueron realizados a 54 testigos de perforación, 28 correspondiente a la Arenisca “U” y los restantes para la Arenisca “T”. La composición modal media para la Arenisca “U” es: Q94.9 F2.6 FR2.5 y para la Arenisca “T” es Q97.6 F1.6 FR0.8. Los datos obtenidos sugieren que los sedimentos proceden del escudo Guyana (gneises y granitos), y de las antiguas formaciones de la cuenca (Jurásico- Cretácico Inferior). La ilita, clorita y caolinita son escasos y precipitaron en una primera etapa de eodiagénesis. Durante la mesodiagénesis la caolinita fue reemplazada por la dickita. Los clay rim de clorita e ilita han favorecido la preservación de la porosidad primaria retardando el sobrecrecimiento de cuarzo. La dickita ha producido microporosidad interlaminar secundaria. Los cementos de cuarzo son los procesos diagenéticos más importantes (promedio 7% a 23%) y son los que influyen principalmente en la pérdida de porosidad primaria. La medida de Th (temperatura de homogenización), indican que los Sobrecrecimientos de cuarzos empezaron a precipitar a partir de los 80ºC, teniendo su máximo desarrollo alrededor de 110-120ºC. Los cementos carbonáticos son escasos y muestran varias fases: siderita S1, calcita, dolomita-Fe, y siderita S2. Todos son post cementos de cuarzo y se presentan en todas las secuencias estratigráficas excepto siderita S1. Sin embargo, todos los cementos carbonáticos son más abundantes en las areniscas fluviales con influencia tidal. Los datos isotópicos indican un origen meteórico para la siderita S1. Los datos de la siderita S2 sugieren una relación con la descomposición de la materia orgánica que se encuentra en las lutitas intercaladas en las areniscas. El alto contenido en Fe y Mg en los cementos de dolomita-Fe/ankerita y los valores isotópicos menos negativos indican una precipitación en un amplio rango de temperatura. El índice de compactación (COPL= 13% para la arenisca “U” y 4% en “T”), y el índice de cementación (CEPL= 17% “U” y 23% para “T”) muestran claramente que la pérdida de porosidad se produce por cementación. Asimismo, la porosidad secundaria fue generada por la disolución de los cementos carbonáticos y feldespatos. La muestras de lutitas intercaladas en las areniscas reservorio, son ricas en materia orgánica de tipo II, III (continental a marino con influencia algal). Todos los análisis realizados en las muestras de lutitas indican reflectancias de vitrinita ( Asimismo, los análisis realizados a los petróleos, en base al grado de isomerización de los esteranos, para conocer su madurez, arrojan valores aproximados de 0,9%, que son valores equivalentes a las reflectancias de la vitrinitas. Estos valores indican que las lutitas de la Fm Napo serían la roca madre de los hidrocarburos extraídos en las dos areniscas “U” y “T”. A pesar de todos éstos resultados cabe destacar que se debe hacer más análisis sobre las lutitas de la Fm. Napo, para corroborar los datos obtenidos en este trabajo. Los biomarcadores analizados en los petróleos de los diferentes pozos (hopanos, homohopanos, esteranos y terpanos) de las diferentes arenas reservorios, no presentan diferencias, lo que indica que los petróleos de las dos areniscas proceden de las misma área fuente. La secuencia de los procesos diagenéticos observada en las areniscas, ha sido interpretada según el modelo térmico de la cuenca, que determina que en la cuenca la generación temprana del petróleo comenzaría entre 7 a 16 Ma, Mioceno (Tortoniense – Serravaliense). [ABSTRACT] The Oriente Basin is located in the eastern part of Ecuador. This foreland basin resulted from transpressives stress during the Upper Cretaceous, which produced the emersion of the Cordillera Real in the western part of the Oriente and the formation of the back arc basin. The “U” and “T” sandstones from the Napo formation of the Cretaceous are the focus of this research. The Napo formation was deposited in periods of marine transgression (HST), detrital sediments came from the western part of the Oriente basin. However, some intervals of the “U” and “T” sandstones were deposited during regressive periods (LST). The thickness of the “U” and “T” sandstones decrease from east to west. Toward the west the sandstones are fine grained well selected and richer in glauconite than the east. Petrological and geochemical determinations were performed from 54 drilling cores of which 28 were in the “U” sandstones and the rest in the “T”. The modal composition average for the “U” sandstone is Q94.9 F2.6 FR2.5 and for the “T” sandstone is Q97.6 F1.6 FR0.8. The obtained data suggest the Guyana Shield (gneisses and granites) and less importantly, the old detrital formations in the basin (Upper Jurassic–lower Cretaceous) as source areas. Illite, chlorite and kaolinite are scarce and precipitated in the early diagenetic stage. Lately, during the mesodiagenesis, kaolinite was replaced by dickite. Illite and chlorite have favoured the preservation of primary porosity delaying the quartz overgrowths. Dickite has produced interlaminar secondary microporosity. Quartz overgrowths are the most important diagenetic process (ranging from 7% to 23% ) and having the major influence on the loss of primary porosity. The measured Th temperatures indicate that they began to precipitate around 80ºC and they had their maximum development around 110-120ºC. The carbonate cements are scarce and show several phases: siderite S1, calcite, dolomite-Fe, and siderite S2. All are postquartz cement and appear in all stratigraphic sequences except siderite S1. However, all carbonate cements are more abundant in fluvial sandstones with tidal influence. The isotopic data indicate a meteoric origin for S1. For S2 siderite, the data suggest a relationship with organic matter descarboxilation in the interbedded shales. The high content in Fe and Mg in the dolomite-Fe/ankerite and the less negative isotopic values indicate precipitation during a wide range of temperatures. Compaction index (COPL= 13% for “U” and 4% in “T”), and cementation index (CEPL= 17% in “U” and 23% “T”) show clearly the control of the cementation over compaction in the loss of porosity. Likewise, secondary porosity (ranging from 5% -11% “U” and 1% - 7% “T”) was generated by dissolution of the carbonate cements and feldspars. The interbedded shales are rich in organic matter type II and III (continental and marine with algal influence). Whole analyses of the R0 ( reservoir did not enter into the hydrocarbon window. However, samples free of hydrocarbon contamination measured R0 at nearly 0,9%. Likewise, the degree of isomerization of the steranes measured on the oil samples gave values of 0,9%, equivalents to the obtained R0. These data suggest that the interbedded shales in the Napo Formation are the source area of the hydrocarbon in the two reservoirs. The biomarkers analysed in the oils (hopanes, homohopanes, steranes and terpanes) did not display differences, suggesting the same provenance for oils in both reservoirs. The sequence for the diagenetic processes occurred in the reservoirs sandstones has been interpreted according to the thermal modelling for the basin, which suggests that the early generation of oil began between 7 and 16 Ma, Miocene (Tortonian - Serravalian). |
En línea: | https://eprints.ucm.es/id/eprint/15353/1/Tesis_JEL%2823-01-06%29.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |