Título:
|
Rota’s universal operators and invariant subspacesin Hilbert spaces
|
Autores:
|
Cowen, Carl C. ;
Gallardo Gutiérrez, Eva A.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2016
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In articular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.
|
En línea:
|
https://eprints.ucm.es/39117/1/Gallardo28.pdf
|