Título:
|
Invariants of combinatorial line arrangements and Rybnikov's example
|
Autores:
|
Artal Bartolo, Enrique ;
Carmona Ruber, Jorge ;
Cogolludo Agustín, José Ignacio ;
Marco Buzunáriz, Miguel ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Mathematical Society of Japan, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría
,
Tipo = Sección de libro
|
Resumen:
|
Following the general strategy proposed by G.Rybnikov, we present a proof of his well-known result, that is, the existence of two arrangements of lines having the same combinatorial type, but nonisomorphic fundamental groups. To do so, the Alexander Invariant and certain invariants of combinatorial line arrangements are presented and developed for combinatorics with only double and triple points. This is part of a more general project to better understand
the relationship between topology and combinatorics of line arrangements.
|
En línea:
|
https://eprints.ucm.es/id/eprint/22048/2/Carmona02libre.pdf
|