Título: | On Marshall’s p-invariant for semianalytic set germs |
Autores: | Andradas Heranz, Carlos ; Díaz-Cano Ocaña, Antonio |
Tipo de documento: | texto impreso |
Editorial: | Complutense, 2004 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/openAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Geometria algebraica , Tipo = Sección de libro |
Resumen: |
The invariant p(V ) has been introduced by M. Marshall as a measure of the complexity of semialgebraic sets of a real algebraic variety V . This invariant is defined as the least integer such that every semialgebraic set S ? V has a separating family with p(V ) polynomials. In this paper we provide estimates for the invariant p in the case of analytic set germs. One of the tools we use is a realization theorem which is interesting by itself. |
En línea: | https://eprints.ucm.es/id/eprint/17191/1/15.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |