Título:
|
Fitting DNA sequences through log-linear modelling with linear constraints
|
Autores:
|
Martín Apaolaza, Níriam ;
Pardo Llorente, Leandro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Taylor & Francis, 2011
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Estadística matemática
,
Tipo = Artículo
|
Resumen:
|
For some discrete state series, such as DNA sequences, it can often be postulated that its probabilistic behaviour is given by a Markov chain. For making the decision on whether or not an uncharacterized piece of DNA is part of the coding region of a gene, under the Markovian assumption, there are two statistical tools that are essential to be considered: the hypothesis testing of the order in a Markov chain and the estimators of transition probabilities. In order to improve the traditional statistical procedures for both of them when stationarity assumption can be considered, a new version for understanding the homogeneity hypothesis is proposed so that log-linear modelling is applied for conditional independence jointly with homogeneity restrictions on the expected means of transition counts in the sequence. In addition we can consider a variety of test-statistics and estimators by using phi-divergence measures. As special case of them the well-known likelihood ratio test-statistics and maximum-likelihood estimators are obtained.
|
En línea:
|
https://eprints.ucm.es/id/eprint/17348/1/PardoLeandro03.pdf
|