Título:
|
Quantum algorithms for classical lattice models
|
Autores:
|
De las Cuevas, G. ;
Dürt, W. ;
Van den Nest, M. ;
Martín-Delgado Alcántara, Miguel Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IOP Publishing, 2011-09-09
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Tipo = Artículo
|
Resumen:
|
We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z2 lattice gauge theory on a 3D square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced by Van den Nest et al (2009 Phys. Rev. A 80 052334) and extended here.
|
En línea:
|
https://eprints.ucm.es/id/eprint/47776/1/Mart%C3%ADn%20Delgado%20Alc%C3%A1ntara%20M%C3%81%2023%20LIBRE.pdf
|