Título:
|
Infinite dimensional holomorphic non-extendability and algebraic genericity
|
Autores:
|
Bernal González, Luis ;
Calderón Moreno, M. C. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
In this note, the linear structure of the family H-e(G) of holomorphic functions in a domain G of a complex Banach space that are not holomorphically continuable beyond the boundary of G is analyzed. More particularly, we prove that H-e(G) contains, except for zero, a closed (and a dense) vector space having maximal dimension, as well as a maximally generated free algebra. The results obtained complete a number of previous ones by several author.
|
En línea:
|
https://eprints.ucm.es/40713/1/Seoane113.pdf
|