Título:
|
Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity
|
Autores:
|
Lobo, Francisco S. N. ;
Olmo, Gonzalo J. ;
Orazi, Emanuele ;
Rubiera García, Diego ;
Rustam, Azmat
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Amer Physical Soc, 2020-11-06
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1
|
En línea:
|
https://eprints.ucm.es/id/eprint/63210/1/Rubiera%2C%20D%2012%20libre.pdf
|