Título:
|
Solvable Lie algebras with naturally graded nilradicals and their invariants
|
Autores:
|
Ancochea Bermúdez, José María ;
Campoamor Stursberg, Otto Ruttwig ;
Vergnolle, L.G.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IOP science, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analysed, and their generalized Casimir invariants are calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension 2n - 1, indicating that gauge theories (with ghosts) are possible on these subalgebras.
|
En línea:
|
https://eprints.ucm.es/id/eprint/14718/1/01.pdf
|