Título:
|
Smooth approximation of Lipschitz functions on Riemannian manifolds
|
Autores:
|
Azagra Rueda, Daniel ;
Ferrera Cuesta, Juan ;
López-Mesas Colomina, Fernando ;
Rangel, Y.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2007-02-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría diferencial
,
Tipo = Artículo
|
Resumen:
|
We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous epsilon : M -> (0, + infinity), and for every positive number r > 0, there exists a C-infinity smooth Lipschitz function g : M -> R such that vertical bar f(p) - g(p)vertical bar
|
En línea:
|
https://eprints.ucm.es/id/eprint/14761/1/12.pdf
|