Título:
|
Ultrametrics, Banach's fixed point theorem and the Riordan group
|
Autores:
|
Luzón, Ana ;
Morón, Manuel A.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2008-07-28
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
We interpret the reciprocation process in K[[x]] as a fixed point problem related to contractive functions for certain adequate ultrametric spaces. This allows us to give a dynamical interpretation of certain arithmetical triangles introduced herein. Later we recognize, as it special case of our construction, the so-called Riordan group which is a device used in combinatorics. In this manner we give a new and alternative way to construct the proper Riordan arrays. Our point of view allows us to give a natural metric on the Riordan group turning this group into a topological group. This construction allows us to recognize a countable descending chain of normal subgroups.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15172/1/10.pdf
|