Título:
|
Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere
|
Autores:
|
Díaz Díaz, Jesús Ildefonso ;
Antontsev, S.N.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Real Academia Ciencias Exactas Físicas Y Naturales, 2007
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T >= delta > 0 and u > epsilon > 0 (here delta and epsilon are given as boundary conditions in the external atmosphere). We also study the limit cases delta = 0 or epsilon = 0 in which the governing system of equations become degenerate. We show that in those cases it appear some interfaces separating the zones where T and U are positive from those where they vanish.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15292/1/38.pdf
|