Título:
|
The Bohr radius of the $ n $-dimensional polydisk is equivalent to $\ sqrt {\ frac {\ log n}{n}} $
|
Autores:
|
Bayart, F. ;
Pellegrino, D. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2014
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Tipo = Artículo
|
Resumen:
|
We show that the Bohr radius of the polydisk $\mathbb D^n$ behaves asymptotically as $\sqrt{(\log n)/n}$. Our argument is based on a new interpolative approach to the Bohnenblust--Hille inequalities which allows us to prove that the polynomial Bohnenblust--Hille inequality is subexponential.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29049/1/1310.2834v2.pdf
|