Título:
|
Global inversion and covering maps on length spaces
|
Autores:
|
Garrido, M. Isabel ;
Gutú, Olivia ;
Jaramillo Aguado, Jesús Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Pergamon-Elsevier Science, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
In order to obtain global inversion theorems for mappings between length metric spaces, we investigate sufficient conditions for a local homeomorphism to be a covering map in this context. We also provide an estimate of the domain of invertibility of a local homeomorphism around a point, in terms of a kind of lower scalar derivative. As a consequence, we obtain an invertibility result using an analog of the Hadamard integral condition in the frame of length spaces. Some applications are given to the case of local diffeomorphisms between Banach-Finsler manifolds. Finally, we derive a global inversion theorem for mappings between stratified groups.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16215/1/Jaramillo05.pdf
|