Título:
|
Insights on the stellar mass-metallicity relation from the califa survey
|
Autores:
|
Marino, Raffaella Anna
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IOP Publishing, 2014-08-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Astrofísica
,
Tipo = Artículo
|
Resumen:
|
We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z) relates to the total stellar mass (M) and the local mass surface density (?) in both spheroidal- and disk-dominated galaxies. The galaxies are shown to follow a clear stellar mass–metallicity relation (MZR) over the hole 109–1012 M range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. We also find a strong relation between the local values of ? and Z (the ?ZR), betraying the influence of local factors in determining Z. This shows that both local (?-driven) and global (M-driven) processes are important in determining metallicity in galaxies. We find that the overall balance between local and global effects varies with the location within a galaxy. In disks, ? regulates Z, producing a strong ?ZR whose amplitude is modulated by M. In spheroids it is M that dominates the physics of star formation and chemical enrichment, with ? playing a minor, secondary role. These findings agree with our previous analysis of the star formation histories of CALIFA galaxies, which showed that mean stellar ages are mainly governed by surface density in galaxy disks and by total mass in spheroids.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29241/1/Art.%20101.pdf
|