Título:
|
The Lazard formal group, universal congruences and special values of zeta functions
|
Autores:
|
Tempesta, Piergiulio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
AMER MATHEMATICAL SOC, 2015-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
A connection between the theory of formal groups and arithmetic number theory is established. In particular, it is shown how to construct general Almkvist–Meurman–type congruences for the universal Bernoulli polynomials that are related with the Lazard universal formal group [31]-[33]. Their role in the theory of L–genera for multiplicative sequences is illustrated. As an application, sequences of integer numbers are constructed. New congruences are also obtained, useful to compute special values of a new class of Riemann–Hurwitz–type zeta functions.
|
En línea:
|
https://eprints.ucm.es/33759/1/tempesta19preprint.pdf
|