Título:
|
Geometric inequivalence of metric and Palatini formulations of General Relativity
|
Autores:
|
Bejarano, Cecilia ;
Delhom, Adria ;
Jimenez Cano, Alejandro ;
Olmo, Gonzalo J. ;
Rubiera García, Diego
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science BV, 2020-03-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta mu nu R alpha beta mu nu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection. (C) 2020 The Author(s). Published by Elsevier B.V.
|
En línea:
|
https://eprints.ucm.es/60041/1/Rubiera%2C%20D%2005%20libre%2BCC.pdf
|