Título:
|
Surgery on double knots and symmetries
|
Autores:
|
Montesinos Amilibia, José María ;
Boileau, Michel ;
González Acuña, Francisco Javier
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 1987-01
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
W. Whitten conjectured [Pacific J. Math. 97 (1981), no. 1, 209–216] that no 3-manifold obtained by a nontrivial surgery on a double of a noninvertible knot is a 2-fold branched covering of S3. The authors give counterexamples to this conjecture and determine the exact range of validity of the conjecture. More generally, they consider closed, orientable 3-manifolds obtained by nontrivial Dehn surgery on a double of a non-strongly invertible knot and study the symmetries of such manifolds, i.e. the homeomorphisms of finite order on these manifolds. They show that, except for a finite number of surgeries, these manifolds admit no (nontrivial) symmetry.
|
En línea:
|
https://eprints.ucm.es/id/eprint/17172/1/Montesinos09.pdf
|