Título:
|
Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe
|
Autores:
|
Ancochea Bermúdez, José María ;
Goze, Michel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Taylor & Francis, 1992
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Álgebra
,
Tipo = Artículo
|
Resumen:
|
One knows that a solvable rigid Lie algebra is algebraic and can be written as a semidirect product of the form g=T?n if n is the maximal nilpotent ideal and T a torus on n . The main result of the paper is equivalent to the following: If g is rigid then T is a maximal torus on n . The authors then study algebras of this form where n is a filiform nilpotent algebra. A classification of this law is given in the case in which the weights of T are k? , with 1?k?n=dimn .
|
En línea:
|
https://eprints.ucm.es/id/eprint/21097/1/Ancochea27.pdf
|