Título:
|
Automorphism groups of hyperelliptic Riemann surfaces
|
Autores:
|
Bujalance, E. ;
Etayo Gordejuela, J. Javier
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Department of Mathematics, Tokyo Institute of Technology, 1987
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
If G is a group of automorphisms of a hyperelliptic Riemann surface of genus g represented as D/$\Gamma$ where D is the hyperbolic plane and $\Gamma$ a Fuchsian group, then $G\cong \Gamma '/\Gamma$ where $\Gamma$ ' is also a Fuchsian group. Furthermore G contains a central subgroup $G\sb 1$ of order 2 and if $\Gamma\sb 1$ is the corresponding subgroup of $\Gamma$ ', then $G/G\sb 1$ is a group of automorphisms of the sphere $D/\Gamma\sb 1$. Using this and structure theorem for Fuchsian groups the authors determine all surfaces of genus $g>3$ admitting groups G with $o(G)>8(g-1)$. There are two infinite families both corresponding to $\Gamma$ ' being the triangle group (2,4,m) and six other groups.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15765/1/Etayo04.pdf
|