Título:
|
Approaching a vertex in a shrinking domain under a nonlinear flow
|
Autores:
|
Herrero, Miguel A. ;
Ughi, M. ;
Velázquez, J.J. L.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
BIRKHAUSER VERLAG AG, 2004
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física matemática
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We consider here the homogeneous Dirichlet problem for the equation u(t)= u?u - ?|?u|(2) with ? ? R, u ? 0, in a noncylindrical domain in space-time given by |x| ? R(t) = (T - t)(p), with p > 0. By means of matched asymptotic expansion techniques we describe the asymptotics of the maximal solution approaching the vertex x = 0, t = T, in the three different cases p > 1/2, p = 1/2(vertex regular), p
|
En línea:
|
https://eprints.ucm.es/id/eprint/16426/1/Herrero21.pdf
|