Título: | Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars |
Autores: | Diniz, D. ; Muñoz-Fernández, Gustavo A. ; Pellegrino, D. ; Seoane-Sepúlveda, Juan B. |
Tipo de documento: | texto impreso |
Editorial: | American Mathematical Society, 2014-02 |
Dimensiones: | application/pdf |
Nota general: |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Álgebra , Tipo = Artículo |
Resumen: |
The Bohnenblust-Hille inequality was obtained in 1931 and ( in the case of real scalars) asserts that for every positive integer m there is a constant Cm so that ((N)Sigma(i1 , . . . , im=1)vertical bar T(e(i1) (,...,) e(im))vertical bar(2m/m+1))(m+1/2) for all positive integers N and every m-linear mapping T : l(infinity)(N) x...x l(infinity)(N) -> R. Since then, several authors have obtained upper estimates for the values of C-m. However, the novelty presented in this short note is that we provide lower (and non-trivial) bounds for C-m. |
En línea: | https://eprints.ucm.es/id/eprint/24705/1/1111.3253v2.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |