Título:
|
Fixed point index and decompositions of planar invariant compacta
|
Autores:
|
Romero Ruiz del Portal, Francisco ;
Salazar, J. M.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science, 2004
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
Let U c R2 be an open subset and let f :U ? f (U) c R2 be a homeomorphism. Let M = M1 U· · ·U Mr C U be a disjoint union of discs that isolates the invariant compactum K. The aimof this paper is to study the dynamics of f in K and to use the fixed point index to detect, in a simple and geometric way, the existence of periodic orbits on which f follows a determined pattern. Our method allows us to compute the fixed point index of every iteration of f in a neighborhood of the periodic orbits following a given itinerary in classical and important semidynamical systems with chaotic dynamics.
|
En línea:
|
https://eprints.ucm.es/id/eprint/19875/1/RomeroRuiz13.pdf
|