Título:
|
On the conformal geometry of transverse Riemann-Lorentz manifolds.
|
Autores:
|
Aguirre Dabán, Eduardo ;
Fernández Mateos, Victor ;
Lafuente López, Javier
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Real Sociedad Matemática Española, 2007
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría diferencial
,
Tipo = Sección de libro
|
Resumen:
|
Let M be a connected manifold and let g be a symmetric covariant tensor field of order 2 on M.
Assume that the set of points where g degenerates is not empty. If U is a coordinate system around p 2 , then g is a transverse type-changing metric at p if dp(det(g)) 6= 0, and (M, g) is called a transverse type-changing pseudo-iemannian manifold if g is transverse type-changing at every point of . The set is a hypersurface of M. Moreover, at every point of there exists a one-dimensional radical, that is, the subspace Radp(M) of TpM, which is g-orthogonal to TpM. The index of g is constant on every connected component M = M r; thus M is a union of connected pseudo-Riemannian manifolds. Locally, separates two pseudo-Riemannian manifolds whose indices differ by one unit. The authors consider the cases where separates a Riemannian part from a Lorentzian one, so-called transverse Riemann-Lorentz manifolds. In this paper, they study the conformal geometry of transverse Riemann-Lorentz manifolds
|
En línea:
|
https://eprints.ucm.es/id/eprint/20276/1/0609838%20%281%29.pdf
|