Título:
|
The weak summability dominion of a sequence S of the Hilbert space in relation with the set of linear bounded operators
|
Autores:
|
Martín Peinador, Elena
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Universidad Nacional Autónoma de México, 1981
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
Let H be a separable, real Hilbert space, L(H) the Banach space of all bounded linear operators on H. For a given sequence (xn)n?N?H with xn?0 for all n?N let C(xn):={T?L(H):?n?NTxn} and M(xn):={x?H:? n?N|(xn,x)|}. The author studies injective (i.e. one-to-one, not necessarily invertible) operators, finite rank operators, and completely continuous operators in C(xn). The following results are shown: (1) C(xn) contains an injective operator if and only if M (xn)=H. (2) C(xn) is contained in the set of all finite rank operators on H if and only if the linear subspace M (xn)?H is of finite dimension. (3) C(xn) contains operators which are not completely continuous if and only if M(xn) contains an infinite-dimensional closed linear subspace of H. Finally it is proved that whenever all operators in C(xn) are completely continuous, they must necessarily be Hilbert-Schmidt operators.
|
En línea:
|
https://eprints.ucm.es/id/eprint/21933/1/MPeinador113.pdf
|