| Título: | Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence. |
| Autores: | Ancochea Bermúdez, José María ; Campoamor Stursberg, Otto Ruttwig |
| Tipo de documento: | texto impreso |
| Editorial: | Elsevier Science, 2016 |
| Dimensiones: | application/pdf |
| Nota general: | info:eu-repo/semantics/restrictedAccess |
| Idiomas: | |
| Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Geometria algebraica , Tipo = Artículo |
| Resumen: | It is shown that for a finite-dimensional solvable rigid Lie algebra r, its rank is upper bounded by the length of the characteristic sequence c(n) of its nilradical n. For any characteristic sequence c = (n(1),..., n(k,) 1), it is proved that there exists at least a solvable Lie algebra re the nilradical of which has this characteristic sequence and that satisfies the conditions H-p (r(c), r(c)) = 0 for p |
| En línea: | https://eprints.ucm.es/34980/1/ancochea33.pdf |
Ejemplares
| Estado |
|---|
| ningún ejemplar |



