Título:
|
On the remainder of the semialgebraic Stone-Cech compactification of a semialgebraic set
|
Autores:
|
Fernando Galván, José Francisco ;
Gamboa, J. M.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science B.V. (North-Holland), 2018
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
In this work we analyze some topological properties of the remainder partial derivative M := beta(s)*M\M of the semialgebraic Stone-Cech compactification beta(s)*M of a semialgebraic set M subset of R-m in order to 'distinguish' its points from those of M. To that end we prove that the set of points of beta(s)*M that admit a metrizable neighborhood in beta(s)*M equals M-1c boolean OR (Cl beta(s)*M((M) over bar
|
En línea:
|
https://eprints.ucm.es/45513/1/Gamboa46libre.pdf
|