Título:
|
Connections between ?-Poincaré inequality, quasi-convexity, and N1,?
|
Autores:
|
Durand-Cartagena, Estibalitz ;
Jaramillo Aguado, Jesús Ángel ;
Shanmugalingam, Nageswari
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Centre de Recerca Matemàtica, 2009-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = No publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We study a geometric characterization of ??Poincaré inequality. We show that a path-connected complete doubling metric measure space supports an ??Poincaré inequality if and only if it is thick quasi-convex. We also prove that these two equivalent properties are also equivalent to the purely analytic property that N1,?(X) = LIP?(X), where LIP?(X) is the collection of bounded Lipschitz functions on X and N1,?(X) is the Newton-Sobolev space studied in [DJ].
|
En línea:
|
https://eprints.ucm.es/id/eprint/28477/1/Jaramillo104.pdf
|