Título:
|
Asymptotic structure, l(p)-estimates of sequences, and compactness of multilinear mappings
|
Autores:
|
Dimant, V. ;
Gonzalo, R. ;
Jaramillo Aguado, Jesús Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Academic Press- Elsevier Science, 2009
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We relate the moduli of asymptotic uniform smoothness and convexity of a Banach space with the existence of upper and lower l(p)-estimates of sequences in the space. To this end, we introduce two properties which are related to the (m(p))-property defined by Kalton and Werner. In this way we obtain a connection between the moduli of asymptotic uniform smoothness and convexity, and compactness or weak-sequential continuity of multilinear mappings. Finally, we give some applications to the existence of analytic and asymptotically flat norms on a Banach space.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16252/1/Jaramillo10.pdf
|