Título:
|
Radial continuous valuations on star bodies
|
Autores:
|
Villanueva, Ignacio ;
Tradacete Pérez, Pedro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We show that a radial continuous valuation defined on the n-dimensional star bodies extends uniquely to a continuous valuation on the n-dimensional bounded star sets. Moreover, we provide an integral representation of every such valuation, in terms of the radial function, which is valid on the dense subset of the simple Borel star sets. Along the way, we also show that every radial continuous valuation defined on the n-dimensional star bodies can be decomposed as a sum V=V+?V?, where both V+ and V? are positive radial continuous valuations.
|
En línea:
|
https://eprints.ucm.es/44060/1/Villanueva26.pdf
|